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Spectrum of turbulence with temperature gradient 
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Department of Mathematics and Science, Hong Kong Polytechnic, Hung Hom, Kowloon, 
Hong Kong 

Received 16 August 1974, in final form 27 May 1976 

Abstract. The problem of calculating the energy spectra of velocity and temperature 
fluctuations in a turbulence which is maintained by a permanent, large scale temperature 
gradient is studied, using a repeated cascade theory. A pair of coupled spectral equations 
is derived containing a turbulent momentum transport coefficient, which is identified as 
the eddy viscosity. An equation is formed which, when solved, leads immediately to an 
expression for the eddy viscosity. Solutions for the velocity and temperature spectra are 
found in the production-transfer, inertial and dissipation subranges. The Kolmogorov 
spectrum is recovered in the inertial subrange. The spectra have the form of power laws 
with exponents ranging from -1 to -7. Some observed spectra illustrate the predicted 
behaviour. A comparison is made between the methods and results of this paper and the 
work of other researchers, notably McComb. 

1. Introduction 

Turbulence which occurs naturally must be driven by an energy source, which also 
normally causes the turbulence to be anisotropic. Geophysical turbulence is commonly 
caused by either wind shear or a temperature gradient (or both). In this paper, 
atmospheric turbulence which is driven by the latter mechanism is considered. The 
problem is complicated by the fact that both the fluctuating velocity and the tempera- 
ture fields must be taken into account, leading to a coupled system of partial differential 
equations for the velocity and temperature spectra. 

The problem will make use of the new repeated cascade theory of turbulence 
recently developed by Tchen (1973), who made an application principally to 
homogeneous, isotropic and incompressible turbulence. This theory has also been 
applied to wave propagation in a turbulent plasma by Martens and Jen (1975). 
Reference may be made to the above cited paper of Tchen for a detailed formulation of 
the repeated cascade theory; only the most relevant aspects will be outlined here. 

In this theory, the fluctuating, or turbulent, part of each variable is represented as a 
series of components. For example, if U ’  is the turbulent constituent of the total 
velocity, U ,  then U ’  is written as 

where u ( ~ )  is called the component of rank a. Higher ranks are associated with 
increasing degrees of randomness in the sense that the correlation length, La, of 
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(u:"'(x, t)u?'(x fr, t ) ) / ( (u'" ' ) ' )  decreases as a increases. Thus, if ( 
average over a length scale La, then 

denotes an 

(1.2a) 

Consequently, 

U(,' = ( U  1 ) ( a + l ) - ( u i ) ( ~ )  

and the averaging operator ( )(,' can be used to distinguish amongst the various ranks. 
It is important to note that the series (1.1) is not an expansion in terms of a small 
expansion parameter (which does not exist in turbulence). 

Continuing to use the velocity as an example, the Fourier transform of u'"'(x, t )  is 
U'"'@, t ) ,  where 

i k a  (a) ~ ( ~ ' ( x ,  t )  = 1 dk e U (k, t ) .  

From (1.2a), and treating ( )(,' as the result of averaging 
turbulent field, it follows that 

many realizations of the 

(1.2b) 

and the Fourier transform u'(k, t )  of u'(x,  t )  is 

u'(k, t )  = u(,)(k,  t ) .  
a 

In view of (1.2b), the principal contribution to u'(k, t )  coming from u'"'(k, t )  will be 
confined to a distinct wavenumber range k, - ,  < k < k ,  so that approximately 

where k, and k,-l are the upper and lower cutoff wavenumbers for the transform of 
rank a. A more rigorous derivation has been given by Tchen (1973). 

The three-dimensional energy spectrum tensor I$'@, t )  corresponding to a spatial 
average ( is defined by 

(1.4) 

where x, = ( ~ T / L , ) ~  arises from the averaging. In terms of the spectrum F,.(k, t )  
corresponding to a spatial average of (U ' ) ' :  
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The energy spectrum e;’ is related to quantities arising from the second order 

(1.6) 

Lagrangian correlation 

Rf’(7) = (uj”’(x(t) ,  t )uj”’(x(t  + T ) ,  t + T ) ) ( ~ ’  = dkRi;’(k, 7) 

where 

R:;’(k, 7) = & ( U j “ ’ ( k ,  t)uj”’(-k, t + 7))(”’. (1.7) 

Clearly 

In the course of the analysis, a quantity 

(1.9) 

will emerge which has both the dimensions and the function of a momentum transport 
coefficient; as it originates with the turbulent motion it will be called the eddy viscosity 
of rank a. Using (1.6) in (1.9) gives 

where 

(1.10) 

(1.11)  

From the definition (1.10) it is seen that 77;;’ is obtained by integrating a correlation 
function over the full range of its argument. Consequently, the eddy viscosity is 
characterized (like molecular transport coefficients) by a scale which is much larger than 
the scales of the microscopic processes from which it arises. The principal contribution 
to vg’ in (1.10) will come from large scales or small wavenumbers. This means that 
~ l ; ’ ( k )  is strongly peaked around k = 0 and the approximation will be made that 

(1.12) 

where f (k) is any continuous, integrable function of k. 
It might be worthwhile to note some of the results which have been obtained by 

Tchen (1973) in the case of homogeneous, isotropic turbulence. In the universal 
equilibrium range, his spectra are 

inertial subrange (k C k,): F (k)  = 1 * 5 9 ~ ~ / ~ k - ~ / ~  (1.13) 

dissipation subrange (k ,  < k < k c ) :  (1.14) 

viscous cutoff subrange (k - k,): F(k) = 0 . 1 5 ( ~ / v ~ ) ~ k - ’ e x p ( - k / k , )  (1.15) 

where k, = 0-17k,, k, = 0*74k, and k, = ( 4 ~ ~ ) ” ~ .  The Kolmogorov and Heisenberg 
spectra are obtained in the inertial and dissipation subranges, respectively. In the higher 
wavenumber portion of the dissipation subrange (here called the ‘viscous cutoff’), a 
Heisenberg spectrum with an exponential tail is found. Results based on these spectra 
are plotted in figure 1, which follows Kraichnan’s (1966) method of presentation. The 

F(k)  = 0 * 1 5 ( ~ / v ~ ) ~ k - ’  
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Figure 1. Spectra of Tchen (1973) (full curve) compared with the data of Grant eta/ (1962) 
in inertial and dissipation subranges. 

experimental points are based on the work of Grant et a1 (1962). F1 is the one- 
dimensional spectrum corresponding to the three-dimensional spectrum F. 

The transition spectrum between the dissipation and inertial subranges has been 
calculated by numerically integrating Tchen's equations. A good agreement with 
experimental data is observed, comparable to that obtained by Kraichnan using the 
abridged Lagrangian direct interaction approximation. The numerical value of 1.59 for 
the Kolmogorov constant (3-dimensional spectrum) is lower than Kraichnan's (1.77), 
who observes that his is rather high, due, at least in part, to computational reasons. The 
1.59 value compares favourably with the Kolmogorov constant based on the observa- 
tions of Gibson (1963), Gibson and Schwatz (1963), Wyngaard and Pao (1971) and 
Wyngaard and Cot& (1971). It is somewhat higher, however, than the value of 1.47 
found by Grant et a1 (1962). 

2. Turbulent hierarchy of equations 

In its non-turbulent state the atmosphere is assumed to be at rest with a temperature 
To(x, t )  which is maintained by external means that do not form part of this problem. To 
is assumed to have a constant gradient. In its turbulent state, there will be an additional 
fluctuating component 8 of the temperature so that the total temperature T i s  

T =  To+e. 

There will also be a turbulent velocity U .  The equations governing U and 6 are the 
conservation of momentum equation 
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the energy equation 

ae ae a2e 
at l a ~ ,  axjax, + UjP j  -+U --=A- 

and the continuity equation 

where po is the static densi-;, p is the A a l  pressure minus c-itic pressure, v is the 
kinematic viscosity, A is the thermal diffusivity, is the unit vector in the direction of 
gravitational acceleration, p is the lapse rate, equal to -aTo/ax j  and a = - N 2 / &  
where N is the Brunt-Vaisala frequency. 

In deriving equations (2.1)-(2.3), the Boussinesq approximation was used and the 
Rayleigh dissipation term was neglected in (2.2), since it is assumed that the molecular 
viscosity will act primarily to dissipate the kinetic energy with the dissipation range of 
the thermal energy spectrum being governed by the thermal diffusivity. Similar 
equations have been utilized by Monin (1962) and by Lumley and Panofsky (1964). 

The cascade expansions of velocity, pressure and temperature, all of form (l.l), are 
introduced into (2.1)-(2.3) followed by application of the averaging operator ( 
The result for a = 0,1,2, . . . is an hierarchy of turbulence equations, each of (2.1)-(2.3) 
generating its own sequence of coupled equations. The first two equations in each of the 
hierarchies coming from (2.1) and (2.3) are as follows: 

where the Lagrangian operator is 

Equations (2.3) gives for each rank 

Fourier transforming (2.4)-(2.8) and using (2.8) to eliminate the pressure in the 
usual manner leads to the following equations for the Fourier transforms u'"'(k, t) and 
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@(k, t) of u(”)(x, t) and d”)(x, t), respectively: 

- A k 2 d ” ( k ,  t )  + Uj”(k, t)Pj 

where 

Aij(k) 8, - k;kj/k2. 

(2.12) 

A hierarchy of coupled equations is also found in the usual formulation of turbulence 
problems. However, this hierarchy results from an attempt to find a closed system by 
generating equations for successively higher order correlations of the fluctuating 
variables. The hierarchies found here result from the fact that any particular scale of the 
turbulence is linked dynamically to neighbouring scales. A more intricate coupling will 
be found in the next section when the equations governing energy (second order 
correlation) are derived. 

3. Equations for energy spectra 

The equation governing the velocity energy spectrum tensor fi:’ is easily obtained 
using the definition (1.4) and equation (2.9). Integrating the equation so derived over 
the cutoff wavenumbers for rank zero, with k-’ = 0 and denoting ko by K ,  see (1,3), 
where K is arbitrary gives 

dkF,(k, t ) =  - Z ~ ( K ,  t)+B;j(K, t ) - 2 ~  dkk2Ej(k, t) (3.1) 
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Following a similar procedure, starting with equation (2.1 l), an equation for the energy 
spectrum for thermal fluctuations, defined analogously to (1.4) as 

@)(k, t )  +“(e(”)(k, t ) d ” ) ( - k ,  t))‘”), 

can be derived as follows: 

dk H(k,  t) = - W ( K ,  t )  + C(K,  t )  - 2h dk k2H(k,  t) (3.4) 
lk: 0 

where 

(0) 

+ ( e ( o ) (  - k’, t)(e(1)(k”, t)uj’)(k’-k”, I))(’)) ) 
c=ipixo J’ dk” [(e(O)(k”, t)uj0)( - k”, t ) ) ( O ) +  (e (o) (  - k”, t )u j0 ) (v ,  t ) > ( ~ ) ] .  

(3.5) 

(3.6) 

c;) and e) were replaced by F and H, respectively, in (3.1) and (3.4) by using the 
property (1.5). In (3.1) and (3.4) the arbitrary upper cutoff wavenumber, K ,  is the 
independent variable. Each of these equations has the form 

time rate of change of energy spectrum in wavenumber range 0 to K 

= rate of nonlinear (or inertial) transfer across spectrum 

+rate of generation or transfer between the F and H spectra due to coupling 

+rate of molecular dissipation. 

Although both the B and C terms act as energy sources for their respective spectra, B is 
in reality a coupling term. Before (3.1) and (3.4) can yield solutions for the spectra, the 
transfer terms T and W, and the energy generation/coupling terms C and B, must be 
expressed in terms of F, H and/or other quantities which can be calculated, i.e. the 
system must be closed. 

The calculations leading to an evaluation of the generation/coupling terms are 
lengthy and are described in appendix 1. The results are 

where the notation for the eddy viscosity introduced in (1.9) has been used. 
The calculation of the transfer term Tj  follows the corresponding method of Tchen 

(1973) up to the point where (3.9) results (see his paper for details). The difference here 
is that an extra term, arising from the lapse rate, must be taken into account, but it is not 
difficult to show that this term does not contribute to the inertial transfer. Hence 

. r  

(3.9) 

The method of calculating the other transfer term W is basically the same as that for T j  
except that the starting point is the corresponding equation for dl). The result, which is 
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analogous to (3.9), is 

W = 27;) dk k,knH(k, t ) .  I,, (3.10) 

Substitution of (3.7)-(3.10) into (3.1) and (3.4) yields the following equations for the 
energy spectra: 

(3.11) 

In these equations the eddy viscosity has not yet been calculated so the system is not 
actually closed. This will be accomplished in the next section by formulating and solving 
equations for the eddy viscosity. 

4. The eddy viscosity 

Instead of calculating the edd viscosity directly, the correlation R:;’(k, T )  will be found 
and used to determine 171; . Multiplying (2.10) by ,ylujl’(-k, c’), averaging and 
assuming a locally homogeneous turbulence gives 

Y 

The viscous term in (2.10) has been neglected since the eddy viscosity is a turbulent, and 
not molecular, transport property. The equation governing %;‘)(k, T )  is found by 
treating equation (2.12) in a similar manner, and is 
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2j1)(k7 7)” -xl J dk’ikkd0)(k’, t ) ( u j l ) ( - k ,  t+T)u: ) (k -k ’ ,  t ) ) ( l ) .  

The evaluation of L“),  dl), and 2‘l) is given in appendix 2. The results are 

(4.3) 

(4.4) 

is the turbulent relaxation frequency for rank a. Substituting (4.3) into (4.1) and (4.2) 
gives the following system of simultaneous equations to be solved for R C’(k, 7): 

Choosing the x 3  axis to point vertically upward and a simple vertical temperature 
gradient model P I  = pai3 gives the following solution for I?!,?): 

Rjj?’(k, 7) = A, em+‘ + C,] em-‘ 

where mi = 
(negative Brunt-Vaisala frequency) and satisfying the condition that 

m. The solution appropriate for an unstable atmosphere 

is chosen. This gives 

R:j?’(k, 7) =Rf,?’(k,  0) exp[-(R‘2’+kHu/k)7] 

where 

Substituting (4.7) into (1.1 1) and using (1.8) gives 

(4.7) 
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A further substitution into (1.10) and using (1.5) gives 

In view of the definition (4.4) of d2), it is seen that (4.8) is actually one member of a 
hierarchy which expresses 77:;) in terms of q$+l). This hierarchy is truncated, and hence 
the system closed, by choosing kl >>K so that effectively the limits of integration are 
from K to infinity and by assuming a(’) =dl). Thus 

Equations (4.5) and (4.6) can also be used to give information about relationships 
among the elements R!1’(k, 0). Solving these equations for R::‘(k, 0) first and then for 
all other elements R:i)yk, 0) gives the latter in terms of R(3:)(k, 0). Thus, R:,?(k, 0) can 
be related to R::‘(k, 0) or, equivalently, to the trace R::’(k, 0). Using (1.8), it is found 
that 

(4.10a) 

(4.10b) 

(4 .10~)  

(4.10d) 

(4.10e) 

5. Solutions for energy spectra 

In view of (4.10), the equation for Ei is required. Contracting i and j in (3.11) leads to 
an equation involving Ti, where 

T , i  = 277, dk k,k,[F,i(k, t )  -(kik,/k2)F,,(k, t ) ]  I:, 
in which the definition of A&) has been used. The scalar trace.fii(k, t) is associated 
with the turbulent kinetic energy and, as such, should depend primarily upon the 
magnitude k of the wavevector k only. The elements F,,(k, t )  are more sensitive to the 
anisotropy induced by the temperature gradient so the term involving Fir is more 
difficult to treat. For the purpose of estimating the contribution of this to Ti, it is also 
assumed that f i , (k ,  t) = F,,(k, t). Furthermore, it is expected that at the small scales 
which contribute to the eddy viscosity qz) ,  the turbulence is isotropic so that 

(5.1) 
(1) = (1) 77- 77 6, 
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where the isotropic eddy viscosity is 

These assumptions give the result 

T,, "2x3' dk k24rk2Ci(k,  t ) .  I,": 0 

Using the simple temperature gradient model and (5 .2 ) ,  the contracted form of (3 .11)  is 

Similarly, assuming that H(k,  t) = H(k, t) gives for (3 .12)  

(5 .3 )  

(5.4) 

The eddy viscosity ~ ( l )  is obtained from (4.9) as 

Since at the higher wavenumbers and smaller scales which contribute to 7'') the 
turbulence is nearly isotropic, a good approximation is that 

R'"+kHu/k G k 2 v ( 1 ) + a  

so that '(l) becomes 

Using ( l . lO) ,  since k-l = 0, ko= K and k l  = 00, (5 .5 )  and (4.10c), ~$0: can be expressed 
in terms of w ( l )  as 

(0) (0) where 77 33 (00) = lim, 
Solutions of ( 5 . 3 )  and (5.4) will be sought for high wavenumbers. Taking the limit of 

both sides of each of these equations as K becomes infinite, and then approximating the 
left-hand sides with these limiting values, gives the following spectral equations, valid 
for high wavenumbers, 

77 3 3 .  

2 ~ ~ ~ 7 ) ' " + 2 ( ~ + $ 7 ( ~ ) )  

2p 2 7 (1) + 2 ( h  -tjq 2 ( 1 )  ) /o"dkk2E(k)=EA 
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where 
F (k )  47rk 2F,t (k) E ( k )  =47rk2H(k) 

m cc 

E = 2 v  lo dk k2F(k)  E A  = 2h lo dk k2E(k) .  

F and E are the three-dimensional scalar energy spectra and E and are the dissipation 
rates of kinetic and thermal energies, respectively. 

For each of the velocity and temperature spectra, there are wavenumber ranges 
defined by certain characteristic wavenumbers which are determined by the parameters 
which have physical significance in the problem. The characteristic wavenumbers for 
the velocity spectrum are as follows: 

buoyancy wavenumber k, = ( u / v ) " ~  

dissipation wavenumber k, = ( 4 ~ ~ ) " ~  
and for the temperature spectrum: 

thermal wavenumber 

dissipation wavenumber 

k, = ( @ / A  2, ' I 3  

kA = (C&,/h 5)1/6 

where cp is the specific heat at constant pressure. The buoyancy and thermal 
wavenumbers characterize the scale at which energy production and coupling are 
important. The dissipation wavenumbers characterize the scales at which molecular 
transport coefficients dissipate the energy of the turbulent fluctuations. The energy 
production ranges are k < k, and k < k,, the inertial transfer subranges are k, << k < k, 
and k, << k < k, and the dissipation subranges are k 2 k, and k 2 k,. These last two 
subranges comprise the universal equilibrium range for each spectrum. For wavenum- 
bers khk, and k h k ,  both the energy production and the inertial transfer are 
important; wavenumbers where this is true comprise the production-transfer subrange. 

In general, the wavenumber scales associated with each of the spectra are shifted 
relative to each other, with the characteristic wavenumbers for the velocity spectrum 
being larger than those for the temperature spectrum in view of the large rate of 
dissipation of kinetic energy. Hence, solutions for the two spectra will be found for the 
cases summarized in table 1. 

5.1. Cases A 

In these cases the wavenumber is in the production-transfer range of the velocity 
spectrum. Hence the two terms describing these processes are the important terms in 
(5.7). Dropping the viscous term gives 

2u277(')+477(') loK dk k2F(k)  = E .  (5.9) 

Case A l .  The equation resulting from (5.8) which is analogous to (5.9) is 

(5.10) 
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Table 1. Cases in which solutions for spectra are found. 
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Wavenumber ranges for velocity spectrum 
~~ ~ 

Wavenumber ranges k z k ,  k , > k  >>k, k > k ,  
for temperature Production- Inertial Dissipation 
spectrum transfer range subrange subrange 

k a k ,  
Production-transfer range Case AI 

kA > k  >> k ,  
Inertial subrange Case A, Case B1 

k > k ,  
Dissipation subrange Case A3 Case B2 Case C 

Differentiating (5.9) and (5.10) with respect to K and neglecting dq(l)/dK except when it 
occurs in conjunction with a factor like U’ or p2  which may not be small gives 

(5.1 l b )  

The derivative of the eddy viscosity is small since q(l)  is slowly varying in the 
production-transfer range. Differentiating (5.5) gives 

(5.12) 

Combining (5.11) and (5.12) leads to 

F 
* 2  + U* - u2 = 0 E = p 2  

*(* + U) 

where I,/I = ~ ~ 7 7 ‘ ~ ) .  The positive solution for + is I/, = $U(&- 1) = 0 . 6 2 ~ .  Hence 

(5.13) 

( 5 . 1 4 ~ )  

(5.14b)  

The components of the velocity spectrum tensor are found from (4.10) and are 

3u2 klk3 
Fl l (k)  =-(-) k-’ 

4~ kkH 
( 5 . 1 5 ~ )  
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Case AZ. Equation (5.8) in the universal equilibrium range, becomes 

2(A +;q(l)) loK dk k2E(k)  = eA 

(5.15b) 

(5 .15~)  

(5.15d) 

(5.15e) 

(5.16) 

reflecting the fact that the production term does not contribute in this range. Dividing 
(5.16) by A +v('), differentiating and proceeding in the manner used to derive (5.11) 
gives 

(5.17) 

Equations (5.11a) and (5.12) remain the same; hence the solutions for q'l), F and f i i  
are the same as in case A l .  Substituting (5.12), (5.13) and (5.14a) into (5.17) gives the 
solution for E as 

k-3 
(0.41c~k-'+Ak)" 

E ( k )  = 0 . 4 1 ~ ~ ~  

In the inertial subrange the thermal diffusivity can be neglected giving 

E ( k )  = 2.44 E.\ k-I. 
U 

(5.18) 

(5.19) 

Case A3. The solutions for q'l), F and F,, are the same as in case A l .  Equation (5.18) is 
also valid, but now, in the dissipation subrange, the molecular thermal diffusivity 
dominates, resulting in 

E ( k )  = 0.41 % k-5. 
A 

5.2. Cases B 

(5.20) 

In the universal equilibrium range the production or coupling terms no longer contri- 
bute and (5.7) and (5.8) become 

2 ( 1 )  2(v +3q ) J '. dk k2F(k)  = E 

2(A +fq'") loK dk k2E(k)  = E ~ .  

0 
(5.21a) 

(5.21b) 

Similarly the contribution from the Brunt-Vaisala frequency to the eddy viscosity in 
(5.5) is small, since this term arises from the energy production by the temperature 
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gradient. Hence q( l )  becomes 

(5.22) 

Dividing (5.21a, b )  by v + ~ ( l )  or A + ~ ( l ) ,  as appropriate, then differentiating these 
equations as well as (5.22) with respect to K and finally combining the results gives 

In the inertial subrange ~ ( ' ) / v  >> 1, (5.23) becomes 

giving 
1/3K-4/3  

77(l)  = 21/3 E 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

Cuse BI. When the temperature spectrum is in the inertial subrange, the molecular 
thermal diffusivity can be neglected in (5.24), i.e., 

A +#I= - 7 7  ( l )  . 
Using (5.25) and (5.26) gives 

E (  K ) = 1 * 2 6 ~ ~ ~  -'I3 K -5/3. (5.27) 

Case B2. In the dissipation subrange the thermal diffusivity dominates the eddy 
viscosity in (5.24). Again using (5.25) and (5.26), the solution for the temperature 
spectrum is found to be 

1/3 
€ A E  -13/3 E ( K )  = 0.35 - K 

A 2  

5.3. Case C 

In the dissipation subrange 77(')/v << 1, (5.23) becomes approximately 

(5.28) 

(5.29) 

(5.30) 
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In (5.24), the molecular term will dominate the eddy viscosity, so using (5.30) gives 

(5.31) 

6. Conclusion and comparison with other theories 

The types of spectra which have been found in this paper have been observed by Kao 
and Wendell (1970) and by Kao (1970). Although the interpretation of the observed 
spectra is complicated by the fact that wind shear is also present, many of the features 
predicted in Q 5 can be seen. Two examples are given in figures 2 and 3. Figure 1 shows 
the spectra of the zonal velocity and of the temperature measured at the 200 mb level 
and at latitude 40"N in the winter of 1964. The velocity spectrum is in the production- 
transfer subrange while the temperature spectrum passes through all three of its 
subranges (production-transfer, inertial and dissipation), as described in cases A. 

'.\ E-k-' 
l o  i 

k k 

Figure 2. Spectra of zonal velocity and temperature as measured by Kao and Wendell 
(1970) and by Kao (1970) (open circles) in winter, 1964, compared with spectra derived in 
Q 5 (straight lines). 

1 0  
10 102 
k 

12 10 
k 

Figure 3. Spectra of zonal velocity and temperature as measured by Kao and Wendell 
(1970) and by Kao (1970) (open circles) in summer, 1964, compared with spectra derived in 
§ 5 (straight lines). 
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Figure 2 shows the same spectra measured at the 200 mb level at latitude 20"N in the 
summer of 1964. In this instance both spectra display a -; power law, indicating that 
both are in the inertial subrange which is described in case B1. 

As can be seen from § 5, the theory presented here gives the Kolmogorov and 
Heisenberg velocity spectra in the inertial and viscous subranges, respectively. This is 
because the effects of the temperature gradient and buoyancy have been assumed to be 
confined to the production-transfer subrange exclusively. The Kolmogorov constant, 
which is found to be 1.26, is somewhat lower than most reported values. For example, 
the measurement of Gibson (1963) and Gibson and Schwartz (1963) lie in the range 
from 1.3 to 1.6. Grant et a1 (1962) find a value of 1.47. A lower value has been 
obtained here than in Tchen's (1973) work because a slightly different method of 
approximating the result of a complicated integration in wavenumber space which is 
involved in evaluating T,, has been used (see equation (5.2)). The simplification used in 
this paper should lead to an estimate of the maximum value of the numerical factor 
involved. Consequently, a more precise evaluation would be expected to increase the 
Kolmogorov constant. 

Equation (5.5) can be solved to give an explicit expression for the eddy viscosity in 
the inertial subrange, where r]")+a = r ]" ) ,  which is 

This expression is different from the classical eddy viscosity of Heisenberg (1948). 
However, (6.1) is a special case of the generalized form for the eddy viscosity proposed 
by Stewart and Townsend (1957), 

obtained by retaining only the c = 1/2 term. They showed that the eddy viscosity (6.2) 
will always lead to a - 7 power law for the velocity spectrum in the viscous subrange. In 
order to push the solution for F ( k )  beyond the so-called viscous cutoff, k,, Tchen (1973) 
developed an alternative method for closing the hierarchy corresponding to (4.8) for 
r]") .  He obtained a Heisenberg spectrum (1.15) with an exponential tail. The same 
result for k >> k, could be obtained for the thermal spectrum; however, as the larger 
scales of the turbulence where the anisotropic effects are evident are of principal 
interest in this paper, it is only noted at this point that the solution for E ( k )  can be 
extended beyond k,. 

Recently, McComb (1974) has investigated the velocity spectrum of isotropic, 
homogeneous and incompressible turbulence based on an equation first derived by 
Edwards (1964). This equation is basically of the same form as (3.1). McComb's 
analysis of the non-linear transfer term (corresponding to Ti) leads to an equation (his 
e uation (2.26)) which is of the same form as would be derived from the equation for 
Ja)(k, t )  using the appropriate member of the hierarchy represented by (2.9) and 
(2. lo), where the arbitrary energy input is due to the buoyancy induced by the 
temperature fluctuations. In equation (3.11) there is no term which corresponds to 
McComb's diffusive input H ( k )  since the rate of change of energy in a wavenumber 
interval beginning at k = 0 is considered in the present paper. 

Equation ( 5 . 9 ,  neglecting the term arising from the temperature gradient, can be 
compared with equation (4.10) of McComb's paper. It is seen that apart from a 
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numerical factor, equation (5.5) is equivalent to McComb’s expression for the eddy 
viscosity with only the first term of his expansion in the integrand retained. The viscous 
effect could also be included in (5.5) by incorporating the appropriate term into 
equation (4.5). The effect of the additional term in McComb’s expansion is to change 
the numerical coefficients in the eddy viscosity and energy spectrum but not the 
variation of these quantities with wavenumber or dissipation rate. It is not completely 
clear that this expansion is in fact convergent, although the results in the inertial 
subrange would seem to indicate that this is so. 

The solution of McComb in the dissipation subrange has the form of an exponential 
decay, obtained asymptotically for k/k, >> 1. For k/k, 2 1, it might be expected that the 
Heisenberg spectrum would be recovered. However his spectral equation does not 
admit a power law solution, so that in this respect the spectrum (1.15) seems more 
satisfactory. 

Appendix 1. Evaluation of energy generation/coupling terms 

From (3.3) and (3.6) it is seen that the terms which act as energy sources in their 
respective equations (although B, really arises from coupling) depend upon the 
correlation (do ) (k ’ ,  t)ui0)(-k’, t))“). Performin a Lagrangian integration of (2.11) with 

result into (3.3) gives 

where 

M~ =cutrxO J dk’ dk” Joa dt’ ikh(Ai,(k’)( U?)(+’, t)(e(’)(kt’, t’)uc’ (,’-v, t r ) ) ( l ) )  

the molecular term neglected, multiplying by uI 6) (-4, t ) ,  averaging and substituting the 

B, = +(Mi,. + Nij )  (A. 1) 

(0)  

and where the notation (i- j ,  k ’ w - k ’ )  denotes a term identical to the immediately 
preceding term but with i and j interchanged and k’ replaced with -k’. In (A.2) and 
(A.3) it has been assumed that there is no memory of initial conditions so that the 
integration on time is over an infinite interval. In (A.3), equations (1.9) and (1.12) have 
been used. 

The correlation ( 6 ‘ ” u ~ ’ ) ‘ ”  which appears in Mi,. can be calculated by integrating 
equation (2.12). In doing this, the molecular term can be neglected, as before, and also 
the source term, since the energy generated is input at scales larger than that of e“’. The 
result, when substituted into (A.2), gives 

Mil = Mj(p) + Mil ( D )  
where 

) + ( i t * j ,  k ’ w - k ‘ )  
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with 

Pg’(k”, t’ lk’-k”, t’)= -1 dt” 1 dk ik,8(0)(k, t”)(u:’(k’-k”, t ’ ) u ~ ’ ( k ” - k ,  t”))“) 
I‘  

0 

I’  (1)  

DE’(k”, t‘lk’-k”, t’) = -1 dt” 1 dkik,( uE)(k’-k”,  t ’ ) (d2’(k,  t ” ) u f ’ ( k ” - k ,  if’))(’)) 
0 

(A.6) 

Since dO’(k,  t) is a relatively slowly varying function of time, being of rank zero, it can be 
removed from the integral over time in (A.5), giving 

~ ; ’ ( k ’ ’ ,  t r ( k r - k r r ,  t’) =-ik;d0)(kr, t’)qEA(k’-krr) (A.7) 

where (1 .11)  and (1.12) have also been used. Substituting (A.7) into (A.4) yields 

where 
m 

+j”’(k) 1 d.r.%ej“’(k, 7). 
0 

It is seen that 
shares property (1.12) with qi;)(k). Thus, since d1)(0) = 0, 

like the eddy viscosity, is a turbulent transport coefficient and hence 

Mij(P)  = 0. (‘4.8) 

To find D;), the correlation (O(2’u(2))(2) in (A.6) is formulated using the equation for 
0‘’) which would be the third member of the hierarchy containing (2.1 1) and (2.12). The 
result is 

(e(’)(k, tfr)uL’)(krr- k, ttf))(’)  = pL1)(k, t”(k” -k, t”) + ~ ; ” ( k ,  tjr(kff -IC,  tr). (A.9) 

P!) is analogous to PIP’ with all ranks increased by one and with 0“’ replaced by 
do)+ dl’. Hence, by analogy with (A.7), 

~ f ) ( k ,  t frJk” - k, t f ’ )  = -ik;[dO’(kt’, r r r )  + d l ) ( k r f ,  t’r)]qj12r)(~tt- k) (A. 10) 

which, when substituted into (A.6) gives a zero contribution to 0:’. DE) is of the same 
form as 0:’ exce t that all ranks are increased by one. Hence 02 ’  will contain a 
correlation (0  U ) inside the integral, which means that the equation for d3) must be 
used to formulate this correlation. The non-zero part of the result will involve (6  U ) 
and so on. The evaluation of 0:’ involves going deeper and deeper into the hierarchy. 
Since for small enough scales = 0 and u ( ~ )  = 0 (i.e. scales larger than the dissipation 
cut off), it follows that the ultimate contribution to DE) found by calculating 

Dg)  = 0, Mij(D) = 0. (A. 1 1) 

(3) ( R ( 3 )  

(4) (4) 

. . . is zero. Therefore p 

From (A.8) and (A. l l ) ,  Mij = 0 and therefore 
B ‘ = $ ~ j  = -TaPm(giTmj+gjj77,, , i ) .  1 (0) (0) 
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Integrating (2.12) to obtain (f3(0)ujo))(0), using (A.7) and following the same argu- 
ment as before concerning the value of DE) gives for C the value 

C = p j p m l g  

Appendix 2. Evaluation of terms in equations for R,, and R, 

Q:), as defined in 94, consists of an integral over wavenumber k' with a factor 
kkup'(k', t) contained in the integrand. At the higher wavenumbers where k k  is large, 
U!') is small since it is a rank zero component associated with larger scales. Hence the 
product is small at all wavenumbers and 

Qi;) zz 0. (A.12) 

A somewhat different argument leading to the same conclusion has been presented by 
Tchen (1973). Similar reasoning may also be applied to 9;'): 

(A.13) (1) - 
9j =o. 

Comparison of $)(k, 7) with (A.6) shows that 

,ylDy'(k, t10 -k, t )  = dt" $')(k, t"- t ) .  I,' 
Utilizing (A.9) and (A.lO) as well as property (1.12) gives 

.$l)(k, 7) = - f f2 ) (k )9 ; ' ) (k ,  7). (A.14) 

A similar procedure based on calculating the correlation ( u ~ ' ) u ; ~ ) ) ( ' )  instead of 
(d')uj ' ))( ' )  (see appendix 1) may be found in the paper of Tchen (1973), in which the 
expression for L, given in equation (4.3) is derived except for a numerical factor of 
one-half which results from a different evaluation of a complicated integration over 
solid angle in wavenumber space. 
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